
 
 
 

Focal Symposium: Connecting the Threads 
Network Theory for Living Systems 

 
 

11 November 2010 
3:30-7:00 p.m. 

Hörsaal 1, UZA 1 
Biozentrum 

Althanstrasse 14, Wien IX. 
 
 
 
 
 
 

David McDonald   University of Wyoming 

Daniel Rubenstein   Princeton University 

Michelle Girvan   University of Maryland 

Ricard Solé   Universitat Pompeu Fabra, Barcelona 

Steve Phelps   University of Essex 
 

 
 

 

Program 
 
 
 
 

Konrad Lorenz Institute for Evolution and Cognition Research 
and 

Department of Theoretical Biology, University of Vienna 



  
Connecting the Threads 

Network Theory for Living Systems 
 
 
 
Networks exist at all levels of biological organization, from genes and proteins 
that interact through mutual regulation over interacting individuals of a 
population to interacting species in ecosystems. The study of networks and 
their properties has, therefore, been a rapidly growing field in different 
biological disciplines—from genetics, via population biology and behavioral 
ecology to evolutionary biology and ecology (May 2006). At the same time, 
network models started to play important roles for technical applications, 
computer networks, and also for the study of human social networks. 
Research in some of these areas was inspired by developments in other 
fields, but partly theory and methods were developed in parallel. In this 
symposium we aim to connect these different threads of scientific inquiry, and 
to ask how graph theory and network thinking can contribute to our 
understanding of biological systems. 
 
In population genetics early models of evolutionary processes were based on 
simplifying assumptions of idealized well-mixed populations. For simplicity it 
was assumed that all individuals were equally likely to interact and reproduce 
with each other. The resulting models of evolutionary dynamics, such as the 
Fisher-Wright process or the Moran process, were very educative and 
indispensable for our understanding of evolutionary processes. Yet, as natural 
populations do not comply with these assumptions, a next generation of 
models, like the island or the stepping stone model, incorporated aspects of 
population structure. More recently, population ecologists have turned to a 
different approach and model populations as graphs, which allows one to 
study any possible population structure within a single framework (Proulx et al. 
2005). In particular, graph based models have become the first choice to study 
the effects of spatial structure on evolutionary processes (Lieberman et al. 
2005; Ohtsuki et al. 2006; Lehmann et al. 2007; Taylor et al. 2007). 
Additionally, extensive studies of evolution on simple graphs such as cycles 
helped to gain deeper insights into general mechanisms of selection 
processes (Ohtsuki and Nowak 2006; Grafen 2007). 
 
In parallel to the developments in evolutionary biology and population 
genetics, behavioral ecologists have picked up graphs as their method of 
choice to represent social groups of animals. This approach started in the 
1970’s (Wilson 1975) but gained new momentum by influential work in the 
social sciences (Watts and Strogatz 1998). Again, the idea is to represent 
social groups as graphs, where vertices correspond to individuals and edges 
to the social relationships between those individuals. Such, graph 
representations of social units allow analyses of animal sociality that were 
impossible with conventional individual-focused approaches (Krause et al. 
2007; Croft et al. 2008; Whitehead 2008). 



 
In ecology, network thinking has a considerable tradition, as already some of 
the founding fathers of modern ecology used network representations and 
terminology to describe trophic networks or “food webs” (Lindenman 1942; 
Odum 1956). One of the early tentative conjectures in ecology was that 
complex ecosystems are more stable, in the sense that those with a richer 
network of interactions among them were less vulnerable to disturbances 
(Elton 1958). Ecologists have, therefore, started to assess how the removal of 
species or their replacement by introduced invaders can alter the trophic 
network structure (Solé and Montoya 2001; Dunne et al. 2002; Krause et al. 
2003). Studies on other kinds of species interactions, such as those between 
plants and their animal pollinators and seed dispersers, have also benefited 
from the network approach (Bascompte 2003). Networks turned out to be a 
useful tool to tackle full communities of pollination mutualisms, and to study 
how conglomerates of species, rather than only pairs of species, co-evolve 
(Bascompte et al. 2003). 
 
The first networks at the molecular level were described over 50 years ago by 
Donald Nicholson (Proulx et al. 2005). With the development of fast and highly 
efficient molecular methods researchers can now characterize complete 
protein–protein interaction networks (Uetz et al. 2000) and gene regulatory 
networks (Lee et al. 2002; Tong et al. 2004). One of the most striking findings 
in this area is the conservation of network features over millions of years. In a 
comparison of protein interaction networks across yeast, nematods, and 
insects, a study by Sharan and colleagues (2005) found that many of the local 
structures within molecular networks have been conserved over most of 
evolutionary time. Furthermore, recent studies demonstrated that the position 
of proteins within a network has important evolutionary consequences. Highly 
connected proteins in the protein interaction network are more likely to be 
essential for survival (Jeong et al. 2001), evolve more slowly (Fraser et al. 
2002) and are less likely to be lost over evolutionary time (Krylov et al. 2003). 
 
As with any other new methodological framework, the question is to what 
extent we are making real progress in understanding biological and 
evolutionary processes or whether we are just telling the same stories with 
fancy new words (Bascompte 2007). Obviously, network approaches can help 
us to focus on aspects of population structure that cannot be inferred from 
observing single individual or dyadic interactions alone. However, the question 
that remains to be answered is: why are such higher level characteristics of 
population structures interesting? Despite the growing number of recent 
network studies, we are—according to Proulx and colleagues (2005)—still in 
the descriptive ‘natural history’ phase of this field, discovering the basic 
structure of biological networks at a variety of scales. In the next phase 
empirical studies have to provide the motivating details for novel, concept- 
driven theory and theoretical work must provide a rigorous predictive 
framework specifically tailored for an evolutionary setting in order to test 
hypotheses about network formation and network function. In other words, the 
challenges for the future are to understand (1) how evolutionary forces shape 
network structure, and (2) how network structure affects evolutionary 
processes. 
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Social Networks: Linking Form with Function in 
Animal Societies 
 
Animal societies develop from interactions and relationships that occur among 
individuals within populations. The fundamental tenet of behavioral ecology is 
that ecological factors shape behavior and determine the distribution and 
associations of individuals on landscapes. As a result, different social 
organizations emerge in different habitats and under different environmental 
conditions. Since characterizations of social systems depend on time and 
motion studies of individual actions and interactions that are bilateral, they are 
often coarse-grained. If social relationships are characterized using social 
networks, however, seemingly similar organizations often differ in terms of 
deep structure. Thus social network theory should provide insights into the 
connections between social form and function. Doing so will require a better 
understanding of how different networks—directed and undirected, passive, 
agonistic and affiliative, as well as aggregate and dynamic—within 
populations are related to each other and shape individual ‘social personality.’ 
This talk will explore the nature of personality of individuals sharing multiple 
networks, the link between personality and leadership, especially in altruistic 
situations, and how the removal or addition of individuals with different 
personalities affects the spread of memes, genes or disease vectors. 
 
 
Biographical note 
 
Prof. Daniel Rubenstein is chair of the Department of Evolutionary Biology at 
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research focuses on decision making in animals. He studies how an 
individual's foraging, mating, and social behavior are influenced by its 
phenotype, by ecological circumstances, and by the actions of other 
individuals in the population. Much of his research has centered on 
understanding the social dynamics of horses, zebras, and asses. His latest 
research focuses on the rules governing animal movements and migration 
and involves the interaction of 'self-organizing' behavioral movement rules, 
ecological information, and habitat structure at multiple spatial scales to 
understand how migratory animal movements respond to human-induced land 
use change, and how these changes in movement in turn affect population 
stability. 
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Social Networks in a Lek: Viscosity, Reputation, and 
Male-Male Cooperation 
 
Lek-mating male Long-tailed Manakins, Chiroxiphia linearis, develop complex 
alliances, over 12-20-year lifespans, culminating in cooperative song and 
dance displays by an alpha and beta pair at each lek. Using social network 
approaches, I found that the social connectivity of young males predicted their 
social status five or more years later (PNAS 104: 10910-10914). While young 
males interact with many males at several leks, older males interact at fewer 
leks with fewer males, but have highly-weighted ties to those few (creating 
social viscosity).These ties reflect performance differences among leks that, in 
turn, determine female choice. Because females choose via hippocampus-
based memory of lek sites, not of individual males, regard for the reputation of 
the site (the lek) enforces orderly queuing by males, even the males at the 
end of the queues. Neither kinship nor reciprocity drives this unique 
cooperative courtship. Instead, younger males benefit by helping establish a 
reputation whose persistence, maintained by female site fidelity, provides 
them with direct but delayed benefits. The modularity of the system (with leks 
acting as distinct but interlinked subnetworks) helps drive the evolution of this 
unusual social system. 
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Emergence of social networks from cooperative 
interactions 
 
Traditional game-theoretic models of cooperative behavior assume complete 
mixing: the probability that x interacts with y is the same for all y. In contrast, 
recent models emphasise the importance of interactions occurring over 
networks and the resulting effect on cooperative outcomes. Many of these 
models assume that the process of network formation is exogenous (eg 
preferential attachment), or alternatively that the network structure is 
endogenous but explicit: agents have full knowledge of their own edges which 
they can manipulate strategically. In contrast, in this talk I introduce a model of 
cooperation in which network structures emerge from the low-level 
interactions between agents. This model gives rise to networks whose 
network properties change dynamically over time, which is consistent with 
longitudinal studies of social networks in human societies. 
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Modeling the Dynamics of Gene Networks 
 
The complex process of genetic control relies upon an elaborate network of 
interactions between genes. Our goal is to use simple mathematical models to 
understand the role of network structure in gene regulation. Here, we focus on 
Boolean systems, which have received extensive attention as useful models 
for genetic control. An important aspect of Boolean network models is the 
stability of their dynamics in response to small perturbations. Previous 
approaches to stability have assumed uncorrelated random network structure. 
Real gene networks typically have nontrivial topology significantly different 
from the random network paradigm. To address such situations, we present a 
general method for determining the stability of large networks of any specified 
network topology and predicting their steady-state behavior in response to 
small perturbations. Additionally, we generalize to the case where individual 
genes have a distribution of ‘expression biases,’ and we consider a non-
synchronous update, as well as extension of our method to non-Boolean 
models in which there are more than two possible gene states. We find that 
stability is governed by the maximum eigenvalue of a modified adjacency 
matrix, and we test this result by comparison with numerical simulations. We 
also discuss the possible application of our work to experimentally inferred 
gene networks, and propose that a dynamical instability in the gene regulatory 
network may be a causal mechanism associated with some cancers. 
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Evolvability, Tinkering, and Causality in biological 
networks 
 
The study of complex systems, particularly biological ones, in terms of 
networks of connected units has been shown to reveal some unexpected 
features of these systems. By looking at the modular organization of protein 
maps at different levels and comparing them with null models of graph growth 
with no functionality, it can be shown that a large part of their structural 
organization can be understood as a byproduct of the duplication-rewiring 
rules. In other words, tinkering is able by itself to produce small world, scale- 
free and modular networks without considering fine-tuned selective pressures. 
In this context, some of the observed regularities might actually correspond to 
evolutionary spandrels. Finally, we also give a look to technological networks, 
finding evidence of tinkering in spite of their obviously designed nature. 
 
 
Biographical note 
 
Ricard Solé is ICREA research professor (the Catalan Institute for research 
and Advanced Studies) and Head of the Complex Systems Lab at the 
Universitat Pompeu Fabra. Since 1997, he has been an external professor of 
the Santa Fe Institute (New Mexico, USA). His main research interest is 
understanding the possible presence of universal patterns of organization in 
complex systems, from prebiotic replicators to evolved artificial objects. Key 
questions are how robust structures develop, how information is incorporated 
into these structures and how computation emerges. He investigates 
principles of organization responsible for the emergence of fundamental 
components of complexity, including the origins of self-reproduction, 
development, life cycles, computational processes, and multicellularity. 



Selected publications 
 
Solé RV (2010) Phase transitions: from genes to ants and social collapse. Princeton 
University Press. 
 
Joppa L, Montoya JM, Solé RV, Sanderson J, Pimm S (2010) On nestedness in ecological 
networks. Evolutionary Ecology Research 12:35-46.  
 
Mestres J, Gregori-Puigjané E, Valverde S, Solé RV (2008) Data Completeness: the Achilles 
heel of Drug-Target Networks. Nature Biotechnology 26:983-984.  
 
Solé RV (2007) Scaling laws in the drier. Nature 449:151-153. 
 
Montoya JM, Pimm S, Solé RV (2006) Ecological networks and their fragility. Nature 442:259-
264. 
 
Solé RV, Bascompte J (2006) Self-organization in complex ecosystems. Monographs in 
Population Biology, Princeton University Press, 325-344. 
 
Solé RV (2005) Syntax for free? Nature 434:289.  
 
Montoya JM, Solé RV (2003) Topological properties of food webs: from real data to 
community assembly models. Oikos 102:614-622.  
 
González-García I, Solé RV, Costa J (2002) Common Pattern Formation, Modularity and 
Phase Transitions in a Gene Metapopulation dynamics and spatial heterogeneity in cancer. 
Proceedings of the National Academy of Sciences USA 99:13085-13089. 
  
Montoya JM, Solé RV (2002) Small World Patterns in Food Webs. Journal of Theoretical 
Biology 214, 405-412 (2002) 
 
Theraulaz G, et al (2002) Spatial Patterns in Ant Colonies. Proceedings of the National 
Academy of Sciences of the USA 99:9645-9649. 
 
Solé RV, Salazar-Ciudad I, Newman SA (2000) Gene network dynamics and the evolution of 
development. Trends in Ecology and Evolution 15:479-480. 
 
  
 
 
 


